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Abstract--In thermoconvection problems, it is generally assumed that the dissipative effects at the interface 
play a negligible role. In dimensionless form, the importance of this effect can be quantified by the interface 
viscosity number Vi. The purpose of this paper is to examine the effects of an interface viscosity on 
convective motions through two illustrative situations performed within a two-dimensional (2D) finite- 
difference code. In the first example, the upper fluid is passive while in the second example, one considers 
two superposed immiscible fluids in a closed rectangular cavity. The maximum surface velocity, the stream 
lines and the: kinetic energy of the bulk flow are calculated for Vi-values varying between 0 and 10. For 
Vi/> 1, it is shown that the interface viscosity has a non-negligible influence, particularly in the vicinity of 

the interface. 

1. INTRODUCTION 

The purpose of the present paper is to show the effects 
resulting from the presence of an interface viscosity 
on thermoconvective motions. Physical arguments in 
support of the existence of a surface viscosity were 
presented among others by Davies and Rideal [1], 
Bedeaux [2], Bedeaux et aL [3], Goodrich [4], Sorensen 
[5] and Edwards et al. [6]. 

The role of an interface viscosity in thermo- 
convection was studied by Scriven [7] and Scriven and 
Sternling [8]. By performing a linear stability analysis, 
Scriven and Sternling [8] showed that surface viscosity 
inhibits stationary :instability in a thin layer of fluid 
submitted to a vertical temperature gradient. 

In parallel with Scriven and Sternling's works, 
experimental obserJations led Cardin and Nataf [9] 
and Cardin et al. [10] to conclude the existence of the 
interface viscosity. The same authors and Wahal and 
Bose [11] also propose a linear study of stability of 
two immiscible fluid layers heated from below, from 
which it follows that an interface viscosity reinforces 
the stability while the nature of the most unstable 
eigenmode changes from stationary to oscillatory. The 

tAlso at Louvain University, Louvain-la-Neuve, Depart- 
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influence of an interfacial viscosity on ther- 
moconvective instability was also examined by Gous- 
bet et al. [12, 13]. 

Experimental observations have confirmed that sur- 
face viscosity may be important for some liquid sur- 
faces supporting thin active films like silicone oils over 
glycerol layers [1, 9, 14] or long-chain alcohol films 
like heptanol, tetradecanol or hexadecanol [15]. 

In this note, the influence of interface viscosity in 
thermoconvection is examined through two simple 
applications selected in order that interface viscosity 
effects are not masked by other phenomena. The first 
application concerns a single liquid layer whose upper 
boundary is in contact with an ambient gas. The liquid 
is submitted to a temperature gradient respectively 
vertical and horizontal; convection sets in under the 
combined effects of buoyancy forces (Rayleigh- 
Bgnard effect) and variations of the surface tension 
with the temperature (Marangoni effect). When the 
temperature gradient is vertical, convection appears 
after the temperature difference between the lower and 
upper faces has reached a critical value while under a 
horizontal temperature gradient, the fluid is immedi- 
ately in motion. In the second application, one con- 
siders two immiscible liquid layers subject to a hori- 
zontal temperature gradient: the two liquids are 
confined in a rectangular box, the coupled Rayleigh- 
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B i  Biot number, B i  z --  h': d Z / k  ~ 

Cp specific heat 
d thickness of the layer 
K kinetic energy 
g gravity acceleration 
h thermal surface conductance 
k thermal conductivity 
L width of the box 
M a  Marangoni number, 

M a  z =_ 7z f l (dZ)2 /#~x  z 

n normal unit-vector 
p pressure 
P r  Prandtl number, P r  k = vk/~c k 

R a  Rayleigh number, 
R a k =_ go~k fl ( dk) 4 / Kky k 

S area 
t time 
T temperature 
u(u, v, w) velocity field vector 
Vi  interface viscosity number, 

Vi  z = (q~+e~)/p k= 'd  k=~ 
x,y, z Cartesian coordinates. 

NOMENCLATURE 

Greek symbols 
coefficient of volumic expansion 

fl characteristic temperature gradient 
es surface shear viscosity 
7(> 0) rate of change of surface tension 
qs coefficient of dilatational viscosity 
x thermal diffusivity 
# dynamic viscosity 
v kinematic viscosity 
p density 
a surface tension 
co vorticity 
q; stream line function. 

Subscript 
0 reference state. 

Superscripts 
k(-- 1,2) 
E(=  1,2) 

integer referring to the fluid layer 
integer referring to the interface. 

B6nard and Marangoni effects are still acting. 
Numerically, a 2D finite-difference code is used. 

2. MATHEMATICAL FORMULATION 

Consider the general configuration formed by two 
immiscible fluids 1 and 2, of thicknesses d ~ and d 2, 
respectively, in a 3D rectangular cavity of width L 
(see Fig. 1). Orientations of the x and y axes are given 
by Fig, 1, the z-axis is normal to the picture. The fluids 
are supposed to be of infinite horizontal extent in the 
z-direction. For numerical facilities, it is assumed that 
both the interface and the upper surface are fiat. The 

fluids are Newtonian with densities given by the state 
equations 

pk = pk(1 _ ~k(Tk__ Tko)) (1) 

superscript k refers to the layer (k = 1,2), pk is the 
density at temperature T~, ~k the constant coefficient 
of volumic expansion. Boussinesq's approximation is 
taken for granted : accordingly, the dynamic viscosity 
#k, the specific heat Cp k, and the thermal conductivity 
k k are constant while the rate of production of heat 
by internal friction is negligibly small. 

The interfaces, referred to by the superscript Z 
(32 = 1 refers to the interface between fluid 1 and fluid 

A 

I 

~ f r e e  surface or r 

L 

Fig. 1. The geometrical configuration. 
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2; Z = 2 refers to the free surface), are submitted to 
a surface tension ~r x whose equation of  state is 

~ = ~0 ~ - ~ ( T  ~ - To ~) (2)  

where a0 ~ is the surface tension at temperature To ~, ~z 
the constant rate of change of surface tension with 
temperature, is supposed to be positive. 

According to Scriven [7], the local form of the 
momentum balance equation at the non-deformable 
interface is given by 

#1 0wl 2 ~w2 00" 
7~-y -~ ay =~+(~s+~s) 

a (au Ow\ ~ law au) 
× yzk~+~)+~s~x -N  (3) 

]~1 oul  2 ou2 ao- 

a(au Ow, a fOu Ow) 
x ~x ~x + ~-Tz) + es ~z t07z -- ~x (4) 

after assuming that the interface density is sufficiently 
small to neglect inertial and gravitational effects. 
Superscripts 1 and 2 refer to the two fluids located at 
each side of the interface, a quantity without any 
superscript means a quantity evaluated at the inter- 
face. From now on, the analysis will be restricted to a 
2D system, so that the interface reduces to a 1-D line. 

For  convenience, the variables are expressed in 
dimensionless form. Distances are scaled by the thick- 
ness of the bottom layer dl ;  the velocity vector 
u = (u, v), time t, pressure p, temperature and surface 
tension cr ~ are scaled by Kl/d I, (dl)2/Kl, 
~lv lp l / (d i )2 ,  fld I and tr0 z respectively 

Finally, the relevant balance equations in the two 
layers are (k = 1,2) : 

Ou k Ov k 
0-~- + ~ = 0 (continuity equation) (5) 

Ouk k Ouk k Ouk 
O---f + u ~ x  + v ~3J = Prk 

( '~( °~"~ ~ ' `  
tCk P' OP~+~¢ S ~-S-X2 + ~ y 2 )  ) (6) × ~7  ~ ax 

Ovk k Ovk OVk 

Ti - +u ~ +~  Oy- 

( = Pr k ~ .  #112k apkoy + -~prl ~ RakTk 

x k (a2v k 02vk'\\ 
+ ~'7 \ O ~ -  + ~5-'2 )}(Navier-St°keSoy/i equations) (7) 

OTk+ukOTk  0 T  k K:k (02 Tk + 0 2 T k )  

at ~ x  + ~ 7 -  = 7 k ax ~ -~y~/ 

(temperature equation). (8) 

The boundary conditions corresponding to each par- 

ticular case studied in this note will be specified at the 
end of the present section. 

To eliminate the pressure term which has a desta- 
bilizing numerical effect, one transforms the balance 
equations (5)-(8) in a vorticity-stream line rep- 
resentation by setting 

OklIk atI-/k 0U k OV k 
U k ~ - - - ~ y  V k ~ - - -  09 k 

Ox = ~-y - ~-x" (9) 

vk is the stream line function and co k the vorticity ; in 
terms of wk and o9 k, the balance equations (5)-(8) 
read as 

&o k a {OVk k ~k ) a 

- -  + ~ \  Ox ) et + Oxx t--@-y ~° + Pr -uc .a'V" ( -  a'e'cf ~ 

,< \ ax  +-DT~-y~,) = °  (lO) 

-bT+Vx\W ~y\ ~x rk) 
~C k (63 2 T k 63 2 Tk',~ 

(11) 

02kI Ik ~2 kIJk 

0x 2 + = oJ. (12) Oy2 

The system (10)-(12) is solved by a semi-implicit 
finite-difference ADI (Alternating Direction Implicit) 
scheme. The time is used as the iterative parameter so 
that the scheme is pseudo-unsteady. 

To illustrate the influence of the interface viscosity 
on thermoconvective motions, two situations are ana- 
lyzed. Firstly, the upper fluid is passive so that the 
interface can be considered as a liquid-gas interface. 
The liquid is contained in an open rectangular box of 
infinite extension in the z-direction and its free surface 
is submitted to a temperature-dependent surface 
tension. The layer is subject to a horizontal and a 
vertical temperature gradient, respectively. 

In the case of a horizontal heating, a ther- 
moconvective motion is instantaneously induced; 
there is no quiescent reference state contrary to what 
happens with a vertical temperature gradient. The 
physical parameters are in this problem given by 
Pr = 1000, Ra = 2000, Ma = 100, which corresponds 
to a silicon oil layer of one centimeter thick subject to 
a temperature difference of 1 °C. 

In presence of a vertical temperature gradient the 
dimensionless numbers are P r = 7 ,  R a =  10000, 
Ma = 1000, corresponding to a water layer of 2 cm 
thick with a temperature difference of 0.1 °C. The criti- 
cal values of the Marangoni and Rayleigh numbers 
obtained for an unbounded horizontal layer [16] are 
Ma c "~ 50 and Ra c ~- 500. 

The corresponding boundary conditions are : 
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on the vertical walls : 

u = 0 v = 0 (no-slipcondition) (13) 

on the lower wall : 

u = 0 v = 0 (no-slip condition) (14) 

on the free upper surface : 

du 
M a  d T  + Vi~:~2 (Marangoni  condition) 

O y -  ~xx 

(15) 

v = 0 (flat surface). (16) 

The conditions are valid for both situations, namely 
a vertical and a horizontal temperature gradient;  in 
the latter case the vertical walls are assumed perfectly 
heat conducting with 

T = 0 . 5 a t x = 0  T = - 0 . 5 a t x = L / d  (17) 

while the temperature field at the horizontal walls is 
given by [14-16] 

T = 0 . 5 - x / ( L / d ) .  (18) 

In the case of  vertical temperature gradient, the 
vertical walls are supposed to be adiabatically iso- 
lated : 

dT 
- -  = 0 (19) 
~x 

and the rigid lower wall is perfectly conducting with 

T = 0.5. (20) 

finally the upper free surface is modelled by the New- 
ton cooling law : 

~3T 
~ + a i ( T + 0 . 5 )  = O. (21) 

In the second problem, we consider two immiscible 
fluids in a closed rectangular cavity submitted to a 
horizontal temperature gradient. The physical proper- 
ties of  the fluids are the same for fluids 1 and 2 except 
for the density ( p l =  2p2). The dimensionless par- 
ameters characterizing the fluids are Pr  1 = 1, Pr  2 = 2, 
R a  I = 2500, M a  = 100, L / d  ] = 4, d2/d 1 = 1, 
f / f  = 1, ~2/od = 1, k2 /k  1 = 1, x2/x I = 1. It results 
f rom these values that R a  2 = 1250. 

The relevant boundary conditions are : 
on the vertical walls : 

u = 0 v = 0 (22) 

T =  - 0 . 5 a t x  = 0and  T =  0 . 5 a t x  = L / d  I 

(23) 

on the horizontal walls : 

u = 0 v = 0 (24) 

T = x / ( L / d  1) - 0 . 5  (25) 

on the interface : 

u I = u 2, (velocity continuity) (26) 

/)1 ~ /)2 = O, 

~U l #2  ~u 2 (~T 

~y #1 ~y M a  ~ x  

(flat interface) (27) 

1/'~zu (Marangonicondition) (28) + t ~x 2 

OT 1 k 2 OT 2 
(heat flux continuity). (29) 

Oy k I Oy 

A (21 × 81) grid was used to solve the first problem 
and a ((21 +21)  × 81) grid for the second application ; 
the numerical calculations were performed on a 
6000/550 R I S K  IBM workstation. The C P U  time per 
iteration is about  0.5 s and the program requires about  
1500 iterations to obtain a stationary solution. 

3. RESULTS 

For  each problem, we have determined the influence 
of  an interface viscosity on the steady flow for a range 
of  Vi-values running from 0 to 10. Fo r  Vi  << 1, no 
quantitative difference with respect to the case Vi  = 0 
has been noticed. For  Vi >> 10, the interface is strongly 
viscous and can be viewed as a rigid plane within the 
limit Vi ~ ~ .  

3.1. One single layer 
When the temperature gradient is horizontal,  the 

mot ion takes the form of a single cell (Fig. 2). When 
the temperature gradient exceeds a critical value 
depending on the characteristics of  the fluid, the cell 
becomes unstable and breaks into smaller cells [17- 
19], but this situation will not  be treated in the present 
study. In Fig. 2 are represented the iso-stream lines 
corresponding to different surface viscosities (V i  = O, 
1, 10 and ~ ) .  The aspect ratio is fixed equal to 4. 
Even for Vi = 0, the centre of  the vortex is not  situated 
exactly at the middle of  the box because of  the pres- 
ence of  surface tensions (Marangoni effect). When 
this effect is reduced due to the presence of  a surface 
viscosity, the cell becomes more and more symetric 
and is perfectly symmetric for Vi = ~ ,  as expected. 

An interesting parameter characterizing the flow is 
the dimensionless kinetic energy per unit-volume 

/dlX2 n j ~ " 
K= 'o' y t/. .oJdSJ (3o) 

L ~ d j j = l p ° d d  
j - -I  

and the maximum surface velocity (u~'ax), n is the 
number of  fluid layers and S j the surface of  fluid j .  
The quantities K and u?x ax are calculated for various 
surface viscosities (V i  = 0, 1, 10 and ~ )  and aspect 
ratios ( L / d  = 1, 2, 4, 6 and 10) (see Table 1). 

For  a fixed surface viscosity, the variation of  the 
aspect ratio produces two antagonist  effects: firstly, 
when the aspect ratio increases, the temperature gradi- 
ent decreases and induces a decrease o f  the energy per 
unit-volume. Secondly, for small values of  L/d ,  the 
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Vi=0 

I I I 
0 1 2 3 

Vi=l 

0 1 2 3 

Vi=10 

0 
I I I 
1 2 3 

Vi=Infinite 

0 
I I I 
1 2 3 4 

Fig. 2. Iso-stream lines in a single layer subject to a horizontal temperature gradient, Vi = 0, 1, 10, oo, 
Pr = 1000, Ra = 2000, Ma = 100. 

wall effects become d o m i n a n t  and  the dissipative 
effects due to the presence of  a surface viscosity are 
more  impor tan t .  This  is a consequence of  the large 
values t aken  by the  te rm d2u/ax2 in equa t ion  (15). The 
first effect is main ly  responsible for the decrease of  
the kinetic energy and  the m a x i m u m  surface velocity 

when  Lid is growing at  the condi t ion  tha t  the surface 
viscosity remains  small (Vi <<, 1) ; on  the contrary ,  for  
large Vi-values the second effect becomes d o m i n a n t  
and  produces  an  increase o f  the velocity at  the surface. 

The decrease of  the kinetic energy and  the 
max imum surface velocity with respect to the surface 

Table 1. The kinetic energy per unit-volume and the maximum surface velocity as a function of the viscosity number, Vi, 
and the aspect ratio, L/d (horizontal temperature gradients) 

Lid 
1 2 4 6 10 

K u~ -~ax K U~T "~ K U~T ~' K u~ ax K ~ax 

0 49.80 18.52 47.18 15.11 31.40 11.79 20.49 9.39 9.77 6.35 
1 28.68 9.35 34.05 12.11 26.19 10.94 18.06 8.93 9.06 6.22 

10 19.15 1.08 16.83 3.85 13.03 6.25 10.53 6.67 6.51 3.57 
oo 18.33 0 13.25 0 5.83 0 3.04 0 1.20 0 
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Vi--O 

1 - - r  l / ~ . ~ ,  = ' '  , .  ~ .~...._ _ _ . ~  

, I ,  I , l l ;+ l / l l tNt(C - '3hD'~/ / l l l l l  I i (  " ) ~Sl,'l] 
tl ~ \ t  ~ . - "  I I  , i l l t t \ \ \ x . . ~ J J l l l l l l i l ~ \ ' , \  . = - _ 1 / / 1 1  I 

I } 

T I T 
0 1 2 3 

Vi=l 

" l  r ,  ,',l!llllII( c-~ " 3 ~ / / 1 / 1 1 [ ' ' " ~  - -  , ' , ' l ,  tI t , ,.. , ,  ,+~it~\X.,\,,r + j ) / l / l  | I t l  ', _ s ]] , , /+ 
, ' "  - - '] ' t  \ \ ~ ~ J ' J / | '  + " "-" - - " "  " ] '  

0 
I 

0 

0 1 2 3 4 

Vi=10 

I I I 

1 2 3 

Vi=lnfinlte 

:I + t / / ¢ . " II [ - % ~ - ' =  
t I I  t <:~ • I i I t \ . . + I I I  \ \ . .  ~ / # i  / I 

,..' ." - - . 7 :  , ,  , .  : __ -__- : . . ,  

"T T ] 
0 1 2 3 4 

Fig. 3. Iso-stream lines in a single layer subject to vertical temperature gradient, Fi = 0, 1, 10, ~ ,  Pr = 7, 
Ra = 10 000, Ma = 1000, Bi = 1. Concentric continuous stream lines indicate an anti-clockwise cell while 

dashed stream lines indicate a clockwise cell. 

viscosity depends strongly on the aspect ratio. Indeed 
the larger the box, the smaller the second derivative 
of  the surface velocity and the smaller the influence of  
the surface viscosity. 

In the presence of  a vertical temperature gradient, 
six stable steady solutions have been found for 
L/d  = 4: they consist of  two, three or four cells with 
either a rising or a downward fluid mot ion along the 
vertical walls, depending on the initial values of  the 
(qJ, co, T) fields. The iso-stream lines for Vi = 0, 1, 10 
and oo are represented in Fig. 3 for the particular case 
of  three cells. When Vi is increased, the density of  
stream lines decreases, indicating a lowering decrease 
of  the velocity. This result generalizes earlier obser- 
vations by Scriven and Sternling [8] and Gousbet  et 
al. [12, 13], accordingly surface viscosity inhibits the 
onset of  motion in pure Marangoni  convection. The 

centre of  the vortex moves towards the middle axes 
y = 0.5 ; when 1,7 = ~ ,  the stream lines have y = 0.5 
as symmetry axis. In Fig. 4 is shown the variat ion of  
the dimensionless kinetic energy per unit-volume K 
vs the surface viscosity. The surface viscosity has a 
dissipative effect on the kinetic energy; this effect is 
the most important  for small values of  Vi. It is worth 
noticing that the importance of  the surface viscosity 
term depends on the surface velocity profile; the 
greater the number of  cells, the greater the in- 
fluence of  the surface viscosity term, as explicitly 
shown in Fig. 4, 

3.2. Two immiscible layers 
In the following example, the left wall is colder than 

the right one. The numerical simulation predicts the 
emergence of  three cells: one anti-clockwise cell in 
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350 " 

150 

50 I i t J I I I I t I 

0 5 I0 

Vi 

Fig. 4. Variation of the kinetic energy with surface viscosity 
(single layer with a w:rtical temperature gradient), L / d  = 4. 

fluid 1, one clockwise cell at the bot tom of  fluid 2 and 
one anti-clockwise cell at the top of  fluid 2 (see Fig. 
5). For  small Vi-wdues, this last cell may split into 
two anti-clockwise small cells (Fig. 5). The presence 
of  the small middle cell is required to ensure the con- 

tinuity of  velocities; this cell becomes smaller and 
smaller when V i  is increased. In the limit of  V i  = oo ,  

this cell disappears. The sense of  rotation of  the cells 
is determined by : 

(1) the horizontal temperature gradient:  the fluid 
rises along the hot  wall and goes down along the cold 
wall and 

(2) the mechanical coupling at the interface : a non- 
zero fluid velocity at the interface induces two contra- 
rotating cells. The sign of  the vorticity changes by 
passing through the interface. 

The relative importance of  these two mechanisms 
can be measured by the ratio R a 2 / R a  ~ and the Mar-  
angoni number M a  which determines the number of  
cells to be observed. A 1-D analysis was performed by 
Villers and Platten [17] ; however, in such a study it is 
impossible to introduce an interface viscosity because 
the velocity u is everywhere constant at the interface, 
as a direct consequence of  their 1-D assumption. The 
velocity profiles in a monolayer  subject to a horizontal 
temperature gradient has also been studied by differ- 

Vi=O 

2 -  

1 -  

<z::S) 

0 -  
I I I 

0 1 2 3 

Vi=l 

2 -  

0 1 2 3 4 

Fig. 5. Iso-stream lines in two layers subject to a horizontal temperature gradient for Vi  = 0, 1, 10, oo ; 
P r  t = 1, P r  2 =: 2, R a  1 = 2500 ( R a  2 = 1250), M a  = 100, L / d  ~ = 4, d2 /d  ~ = 1,/t2/# t = 1, ~t2/ct ] = 1, k 2 / k  I = 1, 

K2/E t = 1. Concentric continuous stream lines indicate an anti-clockwise cell while dashed stream lines 
indicate a clockwise cell. ( C o n t i n u e d  over lea f . )  
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Vi=10 

O- I I I 

0 1 2 3 

2-~ 

0 "  

0 

Vi=lnflnite 

i I I 
1 2 3 

Fig. 5--continued. 

ent authors (e.g. Kirdyashkin [18] and Parmentier et 

al. [19]). 
In the particular case of a rigid interface (Vi = ~ ) ,  

only the first mechanism is relevant and one anti- 
clockwise cell is found in each layer (Fig. 5). When 
both mechanisms are active, two possibilities are 

offered : 

(1) Ra2/Ra 1 >> 1 or Ra2/Ra 1 << 1 : the first mech- 
anism is dominant in the layer with the greatest Ray- 
leigh number. The layer with the smallest Rayleigh 
number is passive; its motion is mainly caused by the 
mechanical coupling with the other fluid. One anti- 
clockwise cell will appear in the layer of greater Ray- 
leigh number and one clockwise cell will be generated 
in the layer of smaller Rayleigh number. 

(2) Ra2/Ra ~ ~ 1 : the first mechanism has the same 
importance in both subsystems and induces one anti- 
clockwise cell in each layer. A third clockwise cell will 
appear in the layer with the smallest Rayleigh number 
because of the mechanical coupling. The size of this 
third cell is growing with M a  : when M a  increases, the 
second mechanism becomes more important. 

A numerical simulation has been performed for 

Ra2/Ra  1 = 0.5 and M a  = 100, which corresponds to 
the second case. For Vi = 0, both thermal and mech- 
anical mechanisms act with comparable intensity since 
the two cells in the upper layer have approximately 
the same size. Since the interface viscosity reduces the 
mechanical coupling between both fluids, the clock- 
wise cell in fluid 2 will become smaller and smaller 
when Vi is increased, as confirmed by Fig. 5. 

The variation of the kinetic energy K with the inter- 
face viscosity is represented in Fig. 6. The interface 
viscosity plays an important dissipative role : the kin- 
etic energy has lost 10% of its value at Vi = 2 com- 
pared with its value at Vi = 0. It should also be noticed 
that the curve slope depends on the aspect ratio of the 
box. Indeed the larger the box, the smaller the second 
derivative of the interface velocity and the smaller the 
influence of the interface viscosity. 

4. DISCUSSION AND CONCLUSION 

Since the interface is generally considered as a 2-D 
fluid, it is natural to introduce an interface viscosity in 
the momentum interface balance equation by analogy 
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10 ¸ 

7 i i i i I i I i i I 
0 5 I0 

vi  

Fig. 6. Variation of the kinetic energy with surface vis- 
cosity (two immiscible layers) with a horizontal temperature 

gradient. 

with the shear viscosity appearing in the 3-D momen-  
tum equation for tlhe bulk fluid. Clearly, one cannot  
ignore the effect of this surface viscosity in comparison 
with the surface tension term without making an 
approximation and providing a sound justification of 
this hypothesis. The aim of this note is precisely to 
discuss the quality .of this assumption with respect to 
the values taken by the so-called viscosity number  Vi. 

In analogy with the classical shear viscosity, the 
interface viscosity plays a strong dissipative role as 
exhibited by Figs. 4 and 6. It affects not  only the 
region close to the. interface but modifies the bulk 
fluid motion. The influence of the interface viscosity 
becomes significant for Vi-values larger than uni t ;  it 
plays a negligible role for Vi << 1 while for Vi > 10, 
the interface behaves as a rigid one. This particular 
situation is met either when the interface is covered by 
unsoluble surfactants which may reduce considerably 
the interface velocity, or for very thin fluid layers ; this 
is easily understandable because the thickness of the 
lower layer appears in the denominator  of the 
expression of Vi (11: is obvious that the term "thin" 
cannot  be given a precise meaning here as the values 
of r/s and es are not  known a priori). 

As shown in equations (15) and (28), the Vi-number 
is multiplied by the second space derivative of the 
surface velocity. As; a consequence, the surface vis- 
cosity effects will depend strongly on the surface vel- 
ocity profile ; in the case of the four-cell structure, the 
second order derivative of the surface velocity is larger 
than for three and two cells and this explains why the 
influence of the surface viscosity is the most important  
in the four-cell configuration. This is reflected by Fig. 
4 where the kinetic energy K is shown to decrease 
more rapidly in the four-cell pattern, This result was 
checked to hold true for two-liquid layers where in 
addition it is observed that K decreases more slowly 
than for a single fluid layer. It appears thus that inter- 
face viscosity effects increase when the number  of cells 
per unit-length along the interface is growing. 

Of course, the basic problem is the determination 
of the interface viscosity Vi; one way out would be 
comparing numerical and experimental experiences. 
More explicitly, Vi could be obtained by measuring 
the experimental velocity profile and by comparing it 
with the numerical profiles provided by the present 
model. 

Within the prospect of further applications, we have 
to point out two important  limits of the present analy- 
sis. Firstly, the numerical procedure was limited to a 
2-D analysis and, secondly, the non-deformabili ty of 
the interface was not taken into account. Nevertheless, 
the merit of  the above simple model is to open the 
way to more realistic descriptions and to show 
explicitly that surface viscosity may have a non-neg- 
ligible influence on thermoconvective flows. 
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